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A pipeline structure of a transform decoder similar to a systolic array is developed to
decode Reed-Solomon (RS) codes. An important ingredient of this design is a modified
Euclidean algorithm for computing the error locator polynomial. The computation of
inverse field elements is completely avoided in this modification of Euclid’s algorithm.
The new decoder is regular and simple, and naturally suitable for VLSI implementation.
An example illustrating both the pipeline and systolic array aspects of this decoder

structure is given for a (15, 9) RS code.

I. Introduction

A concatenated coding system consisting of a convolutional
inner code and a Reed-Solomon (RS) outer code has been
adopted as the standard for future space missions by both the
European Space Agency (ESA) and NASA (Ref. 1). The con-
volutional inner code is a (7, 1/2) code which is also used on
the Voyager Project. The outer Reed-Solomon code is a (255,
223) block code of 8-bit symbols that is capable of correcting
up to 16 symbol errors. The performance of such a concate-
nated code is investigated in Ref. 2 where it is shown that the
concatenated channel provides a coding gain of approximately
2 dB over the channel with only convolutional coding for a
decoded bit error rate of 1075,

Some work has already been done in developing VLSI
encoders for RS codes. The algorithm that was developed in
Ref. 3 by Berlekamp was used in Ref. 4 to design a single chip
(255, 223) RS encoder.

Recently it was suggested by Brent and Kung (Ref. 5) that
a pipeline architecture could be used to compute the greatest
common divisor (GCD) of two polynomials. In Euclid’s algo-
rithm, the GCD of two polynomials can be used to obtain the
error locator polynomial of an RS code. It is shown in this
article that a modified form of Euclid’s algorithm, based on
the idea of Brent and Kung, can be used to find the error
locator polynomial in a transform RS decoder. This algorithm
requires no multiplications by an inverse element in the finite
field.

Utilizing the above mentioned modification of Euclid’s
algorithm, a new pipeline architecture for a transform decoder
is developed to decode RS codes. This architecture can be
implemented on VLSI chips with nMOS technology. Such a
pipeline decoding algorithm can be realized in a systolic-array
architecture, which is presented in this article as an example.
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Il. A VLSI Design of a RS Decoder

Let GF(2™) be the finite field of 2™ elements. Also, let
N = 2" -1 be the length of the (I, ) RS code over GF(2")
with minimum distance d= 2¢+ 1, where /= N- (d- 1)
denotes the number of m-bit message symbols and ¢ denotes
the number of errors that may be corrected in each codeword.

The standard transform decoder for decoding RS codes was
described in Ref. 6. In the transform decoding algorithm, the
Berlekamp-Massey, Euclid, or continued-fraction algorithm
can be used to find the error locator polynomial. It was
decided for this design to use the Euclid algorithm because its
modularity makes it well suited for VLSI implementation. The
operations needed to compute Euclid’s algorithm generally
require the computation of inverse elements in GF(2™). To
avoid the computation of inverse elements, a modification of

Euclid’s algorithm can be utilized to find the error locator

polynomial.

The transform decoding algorithm, which utilizes the modi-
fied form of Euclid’s algorithm to find the error locator
polynomial, is described in the following four steps:

Step 1: Compute the syndromes
N-1
Se =3 rd¥ , 1<k<2t (1)
n=0

where 7, (0 <n <N - 1) is the received code pattern. Note
that £, = S, (1 <k < 21), where £} is the transform of the
error sequence (Ref. 5).

Step 2: Perform the modified Euclid algorithm (described
in the next section) on x2? and the syndrome polynomial

2t
S(x) = E 8, x2% )
k=1

to obtain the polynomial,

Mx) = Agxt + A x4 (39)

Divide the polynomial A(x) by its leading coefficient A,. This
yields the standard error-locator polynomial.

ox) =x'+ox" 4 tg (3b)
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where

>

o, =—'—, I<is<t
§ )\0

Step 3: From the known coefficients o, in Eq. (3b),
compute the remaining elements E, of the transform of the
error sequence for d < k <N where £, = £, from the equa-
tion (Ref. 5):

27
k — .
Eypy ¥ 3, COF0 By p =0 forj>1 (@)
k=1
Step 4: Compute the inverse transform of £, over GF(2™)
to obtain the estimated error pattern. That is,
N-~1
e, = 3, E o, 0<n<N-1 (5)
k=0

Finally, the estimate of the original code vector is obtained by

" subtracting the error pattern from the received pattern.

Figure 1 shows an overall block diagram of this decoder. In
the following sections, a VLSI design for each of the func-
tional blocks is described.

lll. AVLSIDesign for Computing Syndromes

In this section, a VLSI architecture is developed to com-
pute the syndromes for an (¥, I) RS code over GF(2™). The
decoding procedure and the VLSI architecture is illustrated in
the following simple example:

Example. Consider a (15, 9) RS code over GF(24) with
minimum distance d=7. In this code, =3 errors can be
corrected.

To compute a generator polynomial for this code (Ref. 7),
one can use the representation of the field GF(2%) given in
Table A-1 of the Appendix. One generator polynomial of such
a(15,9) RS code is

6
o) = [T - o)
=1
= x5 + al%5 + ol + afx® + i + % + of
(6)




Assume the message symbols are
I(e) = alO%1% + ai2x13 + oBx12 4 oSxll 4 610
+ a0 + o135 + lly7 4 oOx6 (7)
The encoded codeword, which is a multiple of g(x), is then
e(x) = ofOx1% + ol2x13 4 oBx12 4 fxll 4+ (6510
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+ %y 4 o138 11,7

x8 + allx? + x5 + x°

+ ot + o?x® + af%? + al’x + of

(8a)
Written as a vector, the codeword is
c(x) = (&0, a'2, 68, 05, b, o'%, 013, all, o2, a0,
02,08, a2, a®) (8b)

Suppose that two errors exist in the error pattern as follows:
e(x) = (0,0,0,0,0!,0,0,0,0,0,0,a7,0,0,0) ©)

Then the received pattern is

HX) = (F gty "5 7p) = clx) + e(x)

= (am’ 0{12, aB’ 0[5, @, al4’ cvl?.’()lll 9 0

0i12, a()’ o112, aS) (10)

The syndromes of this received message are

14
= nk
h Z r,Q
n=0

o’ (@@ + o (al®)F for1<k<6

(11)

This yields S, = a7, §, = &¥2, §5=0ab, §, = a!?, 5, = a4
and S¢ = al4. To develop a VLSI design to compute Sy, let
the first expression in Eq. (11) be rewritten in recursive form
as

- k
Sy = Coo i (((r g0 + 7 )0 7 )0k + 00 )a¥ +r)

= (...((@0a® + a'?)a* + oB)ak +)ak + of

(12)

A structure for computing Eq. (12) is shown in Fig. 2. In this
figure, the function of each cell is given by the register transfer
relation

for 1<k<6 (13)

71—k
B, < A, + Ba

where “«<” denotes the operation, *“is replaced by.” The input
data are sent to all of the cells simultaneously. Assume initially
that all registers are set to zero. After the complete received
codeword is entered, the desired syndromes S, are contained
in registers B,,_, (1 <k <6). The syndromes computed in this
manner are shifted serially from the right end of register B
and fed into the next stage, which performs a modification of
Euclid’s algorithm. The sequence {S;} of syndromes are con-
veniently represented as in Eq.(2) by what is called the
syndrome polynomial,

2t
Sx) = 3 8 xk
k=1

In particular, the syndrome polynomial for this example is

S(x) = 0£7X5 + 0Ll2x4 + a6x3 + a12x2 + a14x + 0[14

(14)

IV. A Systolic Array Architecture to Compute
the Error-Locator Polynomial with a
Modified Form of Euclid’s Algorithm

It is shown (Ref. 7) that the error locator polynomial can
be calculated from the syndrome polynomial by means of
Euclid’s algorithm. Since quotients are needed in the usual form
of Euclid’s algorithm, inverses of field elements are required at
each stage. The successive computation of these inverses is
difficult to realize in a VLSI circuit. It was shown in Ref. 5
that Euclid’s algorithm could be modified to eliminate the
computation of inverse elements. In this section, this new idea
is applied to the computation of the polynomial A(x), defined
in Eq. (32).

Consider the two polynomials,
A(x) = x**
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2%
S@) =Y, 8, 2k
k=1

The modified form of Euclid’s algorithm is a recursive proce-
dure for finding the i*™ remainder R,(x) and the quantities
v;(x) and A,(x) that satisfy

7;(0)AG) + A G)S(x) = R,(x) (15)
When the degree of the remainder R;(x) is less than z, the

algorithm stops. The resulting A;(x) at the termination of the
algorithm is the desired polynomial, A(x), in Eq. (3a).

The initial conditions of the algorithm are

Ryx) =A(x) Q) =8k (16a)
A, () =0 By(x) = 1 (16b)
7o) =1 n,(x) =0 (16¢)
For i > 1, compute recursively
R = b, [0, R, )+ 35, 0, (]
~a, x' o, 0, () + 7, R, )]
(172)
NG = b, o, A )+ o, m, (0]
- a, X o ., () + T A )]
(17b)
v, ) = b, o, v, )+ 0, m,_ )]
- 4, % o )+ Ty, ()]
(17¢)
Qx) =0,_,0, () *+0,_ R,  (x) (17d)
ux) = o )+ 0, A () (17¢)
n, () = o ) o v, (%) (175)
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where a;_; and b, ; are the leading coefficients. of R;_;{x)
and Q;_,(x), respectively

—
Il

iy = deg (R, () - deg(Q; ()

o, =1 if1,_ >0

if1,_, <0

The algorithm stops when deg (R;(x)) <.

The proof that this algorithm performs the desired compu-
tation is similar to that of the standard version of Euclid’s
algorithm, and it is not included here. Notice that the 2¢
computations of inverse field elements that are needed in the
usual form of Euclid’s algorithm are not required in the above
modified version of Euclid’s algorithm. The computational
details needed to find the error-locator polynomial of an
RS(135, 9) code over GF(2%4) using the modified Euclid’s algo-
rithm are given next in a continuation of the previous exam-
ple. The implementation of this algorithm is accomplished by
means of a systolic array cell design. Such a systolic array
structure is presented here in considerable detail.

Consider the decoding of the three-error-correcting
RS(15, 9) code described previously. The syndrome polyno-
mial S(x), given in Eq. (14), is used in the modified Euclid’s
algorithm to calculate A(x).

Step 1. By Eq. (17), fori=1: 15 =6 - 5=1and o, = L.
Hence let

R,(x) = 'R (x) + xQ,(x)

NG = a7 (%) + xu ()

g@=é&nmmw=%w
where

Ry(x) = x°,Q,(x) = S(x)

W) = Oandpy(x) = 1

Note that y,(x) and n,(x) are not needed in the computation
of A(x). Thus,

Rl(x) = a'%5 + abx* + alZx® + al¥x? + oty




A ) = x,Q,(x) = S(x),andp, (x) =1

To implement this operation, let the coefficients of R (x),
Qo (%), Ag(x) and uy(x) enter the first cell of the systolic array
in the manner shown in Fig. 3.

The quantities d(R,) and d(Q,) are integers representing
the degrees of Ry(x) and Qy(x), respectively. The “start”
signal is a timing signal used to indicate the beginning of the
polynomials, i.e., the leading coefficients. Note that to com-
pute R;(x) = a’Ry(x) + xQy(x) from Ry(x) and Qy(x) term
by term, the leading coefficients of Ry(x) and Qy(x) are
aligned with the start signal. Such an arrangement corresponds
to the simultaneous entry of R,(x) and xQ,(x) into cell 1.
The inputs A\y(x) and xpy(x) to cell 1 are aligned with the start
signal in a similar manner.

The functional block diagram of cell 1 is shown in Fig. 4(a).
The start signal, as well as xQ(x) and xu 4 (x), are delayed by
one time unit in such a manner that the leading coefficients of
R (x), Q,(x), A;(x) and u,(x) are properly initiated by the
start signal at the output of cell 1.

Step 2. Since 1, = deg(R,(x)) - deg(Q,(x))=0,0, = 1.
Thus,

R,(x) = ¢'R (x) + a?Q, (x)

10,4

o x ta 5x2

+ aSx 1

x3 tata
A x) = a"x (x) + o'?p (x) = a’x + a?

Q,(x) = Q,(x) and p,(x) = p, (x)

The implementation of cell 2, shown in Fig. 4(b), is essen-
tially identical to cell 1.

Step 3. From cell 2, d(R,) = 4 and d(Q,) = 5. Thus,

l2 = —1<Oandor2 =0

Hence, by Eq. (17),

R (x) = a'°Q (x) + xR, (x)

11.2

+ ollx ?

4 13x3

ox” t o« + ax t «

A () = a1°u2(x) + a7x?\2(x)

a14x2 + oz4x + o‘10
0,00 = R,() and uy(x) = 2, )

In Fig. 4(c), the role-switching operation is implemented by
a simple crossover at the inputs of cell 3. Following the switch-
ing operation, cell 3 is identical in operation to cells 1 and 2.

Step 4. Since d(R,) = 4 and d(@;)=4,13=0and o3 = L.
Thus,

R,(x) = a'?R, (x) + aQ,(x) = ox3 + 0x2 + o’x + aof

6

x + o

A, () a1°7\3(x) +auy(x) = x* + a

0, = 0,() and u,(¥) = py(x)

The implementation of this step is presented in Fig. 4(d),
which is again identical to cells 1 and 2. Note that d(R,) =3
although the actual degree of R,(x) is only 1. The reason for
this is that R,4(x) can be viewed as a polynomial of degree 3
even though the coefficients of x3 and x2 are both zero. Such
an arrangement reduces the degree of polynomials regularly by
one as the polynomials propagate from cell to cell. At the next
stage one will see how zero leading coefficients are treated.

Step 5. Since d(R,) =3 andd(Q,)=4,1,=3-4=-1and
o, = 0. However, the computation cannot continue to obtain
R4(x) from R,(x) and Q,(x), term-by-term, since the leading
coefficient of R,(x) is zero. Hence the proper treatement is to
first assign

R(x) = 0,(x), 0,0 = R,()

A %) = p (), g (x) = N, (%)

and to then reduce the degree of Q(x) by one and pass the
result on to the next cell. That is, let

Qs(x) = 0x? +a%x +ab andd(QS) =3-1=2

In this particular example note that after the reduction,
d(Q;) = 2 <t = 3. Hence the systolic array should stop calcu-
lation at this point and accept us(x) as the final result,
namely,

Ax) = px) = o®x? +obx + o (18)
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The functional diagram for the implementation of this step
is shown in Fig. 4(e). At the output, the start signal’s 1 points
to the leading coefficient of 0 of A(x) = Ox3 + a®x2 + abx +
o,

Since the syndrome polynomial can have degree at most
2t -1 and each cell in this modified algorithm reduces the
degree of one of the input polynomials by one, it will take 2¢
cells in the worst case to produce an output polynomial of
degree less than . Hence, only 2¢ such cells are needed in the
RS decoder. If the algorithm actually concludes after the i
cell, then the 2¢ - i subsequent cells will pass the polynomials
unchanged as did the 6™ cell in the above example (see Fig.

4(1).

The function for a typical cell of this array is described by
the flowchart in Fig. 5. The architecture of the cell is given in
Fig. 6. The above systolic array design has been simulated
completely on a computer, and it has been validated.

V. The Recursive Circuit for Computing the
Remaining Transform Error Pattern

To compute the remaining transform error pattern of an
(15, 9) RS code, Eq. (18) is multiplied by a™ to yield

ax) = x*+ oxto,

where

= 12 - 13
o, o anda2 o

Thus, by Eq. (4), the recursive equation is

- Al2 13 i = .
B, =o?E, +aB®E (=5

- £, 13)

(19)
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The circuit for implementing Eq. (19) is shown in Fig. 7. In
Fig. 7, registers R, and R, are initialized to contain E; and
Eg, respectively. Thus £, = o0, Eg = 0, By = a3, E, = al0,
By =08 By =0t Eg=allE, =a and B 5 =E, =a®
are obtained sequentially. The same circuit extends naturally
to the general case given in Eq. (4) for an (N, I) RS decoder
over GF(2™),

VL. A VLSI Design for Computing the
Error Pattern

By Eq. (5), the inverse transform of the error pattern
obtained in the last section is

14
e =), E o™, 0<k<14
n=0
or

_ & % L2 T
€= (.. (B o tE )a"+E Ja "+ )a" + E)

=(.. .(((ozoa"+oz”)a"+a4)ak . ")Otk - ')ak+'--a8)

(20)

The VLSI technique for computing Eq. (20) in a (15, 9) RS
code over GF(2*) is similar to that used in the VLSI design for
computing syndromes. The number of basic cells needed to
compute Eq. (20) is 15, The pipeline structure for computing
Eq. (20) is given in Figure 8. The desired result is given in
Eq. (9). The same circuit extends to a VLSI design for com-
puting Eq. (5) in a general (N, I) RS code over GF(2™).
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Fig. 2. The systolic array to compute syndromes of a (15, 9) RS code over GF(2%)
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Fig. 3. The timing sequence of the input data
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FROM PREVIOUS CELL: Ri(x) Qi(x) d(Ri)

M) 260 (@)

YES

OR
d(Qi) <t

d(Ri) < d(Qi)

\

IF dR) < t, PASS X(x)

TO THE NEXT CELL,
OTHERWISE PASS ,u.i(x)

SWITCH
Ry(x) == Gy
PASS A i(x)o'“‘i(x)
dR,) ~=d(@)
. I
LEADING
NO COEFFICIENT OF YES
; Q4 =0
AR,y =dR) =1
d(Q,, ) = d(@)
YES YES

NO

{

dR;,p) = d(R)
4(@,,) = Q) - 1

NO

CALCULATE RH](x)
AND A i+l(x)

ALGORITHM STOPS
Ax) = )‘H_‘(x)

CALCULATE Ri+'l(x)
AND )\i_‘_](x)
ALGORITHM CONTINUES

ALGORITHM STOPS
NG) = 4y (x)

ALGORITHM CONTINUES
PASS Ri(x)’ Qi(x)

A;6) AND X, (x)

! ' '

'

!

TO NEXT CELL

Fig. 5. The flowchart of the function of each cell
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Fig. 6. The architecture of one cell of a systolic array to compute polynomial with modified Euclid’s algorithm
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Fig. 7. A recursive circuit for computing the transform
error pattern
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Fig. 8. The pipeline structure for computing error pattern in a (15, 11) RS code
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Appendix A
The Construction of GF (24)

In this appendix, the construction of a finite field of 2% elements is given. To
construct this field consider the irreducible polynomial x* + x + 1 over GF(2). Let ae
GF(2*) be a root of x* + x% + 1, i.e.,0* + &® + 1 = 0. The 15 nonzero field elements are
given in Table A-1 in terms of root a.

Table A-1. Representations of the elements of GF{2%) generated by
a'+a+1=0

Element oz3 042 <% o
o0 = 0 0 0 1
ol = 0 0 1 0
o = 0 1 0 0
o = 1 0 0 0
ot = 0 0 1 I
o = 0 1 1 0
ol = 1 1 0 0
o = 1 0 1 1

8- 0 1 0 1
o = 1 0 1 0

o0 = 0 1 1 1
. 1 1 1 0
2. 1 1 1 1
13 - 1 1 0 1
ot = 1 0 0 1
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